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PEAK SHIFT DISCRIMINATION LEARNING AS A MECHANISM OF
SIGNAL EVOLUTION
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Abstract.—‘‘Peak shift’’ is a behavioral response bias arising from discrimination learning in which animals display
adirectional, but limited, preference for or avoidance of unusual stimuli. Its hypothesized evolutionary relevance has
been primarily in the realm of aposematic coloration and limited sexual dimorphism. Here, we develop a novel
functional approach to peak shift, based on signal detection theory, which characterizes the response bias as arising
from uncertainty about stimulus appearance, frequency, and quality. This approach allows the influence of peak shift
to be generalized to the evolution of signalsin avariety of domains and sensory modalities. The approach isillustrated
with a bumblebee (Bombus impatiens) discrimination learning experiment. Bees exhibited peak shift while foraging
in an artificial Batesian mimicry system. Changesin flower abundance, color distribution, and visitation reward induced
bees to preferentially visit novel flower colors that reduced the risk of flower-type misidentification. Under conditions
of signal uncertainty, peak shift results in visitation to rarer, but more easily distinguished, morphological variants
of rewarding species in preference to their average morphology. Peak shift is a common and taxonomically wide-
spread phenomenon. This example of the possible role of peak shift in signal evolution can be generalized to other
systems in which a signal receiver learns to make choices in situations in which signal variation is linked to the
sender’ s reproductive success.
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An appreciation for the role of cognitive phenomena as
part of the mechanism of natural selection has been building
for several years (e.g., receiver psychology [Guilford and
Dawkins 1991], cognitive ecology [Dukas 1998]). One topic
that has surfaced repeatedly at this interface between com-
parative psychology and behavioral ecology is the discrim-
ination learning phenomenon ‘‘peak shift.”” Peak shift is a
common finding in discrimination learning experiments (Rill-
ing 1977): Control subjects are trained to respond (e.g., but-
ton press) to a positively reinforced stimulus (S+, e.g., aline
of a particular orientation or a light of a particular wave-
length). Treatment subjects are trained identically to control
subjects with respect to S+ and are also trained to withhold
response to an unreinforced stimulus (S—, e.g., a line ori-
entation or hue similar but not identical to S+). Both groups
of subjects are then tested without reinforcement on a con-
tinuum of similar stimuli. During the test, control subjects
respond most strongly to the S+ stimulus. However, treat-
ment subjects respond most strongly to a novel stimulus in
preferenceto the onethey learned wasrewarding during train-

ing.
The Peak Shift Discrimination Phenomenon

The phenomenon that treatment subjects display in this
type of experiment is known as ‘‘peak shift’” (Hanson 1959,
and reviewed in animal learning textbooks, e.g., Domjan
1998; Shettleworth 1998). A plot of the subjects’ strength of
response as a function of stimulus value shows a bell-shaped
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response gradient. The stimulus receiving the maximum
(‘““peak’) response by the treatment subjects is said to be
‘“*shifted’’ relative to that of the control subjects. The shift
isin adirection away from S—, but is limited in its extent;
extreme stimuli do not receive increased response. Thereis
also a shift of the most strongly avoided stimulus off of S—,
away from S+ (Guttman 1965). The seemingly paradoxical
preference for an unrewarded and novel stimulus over the
stimulus that subjects have learned is rewarding during train-
ing can be accounted for mechanistically by additive inter-
action of bell-shaped S+ and S— generalization gradients
(gradients of the strength of the learned association between
stimulus morphology and response reinforcement) that over-
lap each other across the range of test stimuli (reviewed by
Cheng 2002).

The response bias inherent to peak shift has lead several
researchers to hypothesize that it could be involved in the
evolution of signaling systems. Much thought has been ap-
plied to the potential role of peak shift in the sexual selection
of sex or species recognition characters (Guildford and
Dawkins 1991; Weary et al. 1993; Enquist and Arak 1998)
and in the evolution of warning coloration (Leimar et al.
1986; Gamberale and Tullberg 1996; Enquist and Arak 1998;
Y achi and Higashi 1998; Lindstrom et al. 1999). In the con-
text of the evolution of warning coloration Leimar et al.
(1986) and Y achi and Higashi (1998) developed mathemat-
ical models of learning. Their results indicated that for the
evolution of warning coloration, peak shift could mitigate
hypothesized requirements for kin selection, nonlethal at-
tacks, prey aggregations, and large mutational changes im-
posed by theories that did not take features of discrimination
learning into account. Leimar and Tuomi (1998) applied peak
shift toward the understanding of plants' anti-herbivore de-
fenses. Weary et al. (1993) recognized that peak shift might
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have effects on within-species discriminations other than sex-
ual selection, and suggested discriminations of adult versus
adolescent and low versus high quality individualsas possible
domains in which to search for an influence.

Here, we present an experiment within a novel functional
account of peak shift based on signal detection theory. Mod-
eling learned behavior at a functional level in this manner
highlights the commonalities across the diverse sensory and
behavioral domains within which generalization and discrim-
ination have fundamental roles (Ghirlandaand Enquist 2003).
As a model of cognition, signal detection theory provides a
powerful comparative framework within which to understand
cognitive behavior as both agent and object of natural se-
lection.

The Sgnals Approach to Discrimination Learning

Signal detection theory (SDT, Green and Swets 1966; Wi-
ley 1994) is a mathematical description of the trade-offs and
uncertainty inherent in the reception of signals (i.e., discern-
ing one signal from another or signal from noise). The theory
specifies three parameters that every signal has and that, op-
timally, any receiver should take into account when respond-
ing to asignal: (1) asignal’s frequency distribution over the
sensory domain, (2) a signal’s abundance relative to alter-
native signals, and (3) the payoffs for responding to or ig-
noring a signal. From the perspective of behavioral ecology,
resources (e.g., food, mates) can be considered as sensory
stimuli that emit signals (e.g., their appearance). As a func-
tional model of decision-making, signal detection theory thus
links choice behavior to estimates of ecologically valid var-
iables upon which to base those choices: the distribution,
abundance, and quality of resources.

In behavioral ecology, the uncertainty modeled by SDT is
typically considered to arise from perceived similarity in the
appearance of stimuli (Wiley 1994). Perceptual variability in
prey appearance might mirror phenotypic variability in the
prey or arise from sensory noise (Boneau and Cole 1967).
Additionally, the uncertainty modeled by SDT may arisefrom
stimulus generalization (Blough 1967, 1969; Lynn 2005), a
process dependant on reinforcement history in addition to
perception. Reciprocally, the account of peak shift devel oped
here suggests that the phenomenon, while traditionally as-
sumed to arise from learning, might also arise from conven-
tional perceptual uncertainty.

SDT uses information about stimulus encounters to place
a behavioral response criterion (a threshold) on the stimulus
domain; stimuli on one side of the threshold receive a re-
sponse, stimuli on the other side are ignored. Optimal cri-
terion placement maximizes the number of correct detections
of S+ (signalsto which response is relatively advantageous)
and correct rejections of S— (signals to which response is
relatively disadvantageous) while minimizing missed detec-
tions of S+ and false-alarm responses to S—. The influence
of the three signal parameters on optimal behavioral response
is described by a utility function (Sperling 1984; Wiley
1994):

U(X) = «hP[CD] + amP[MD] + (1 — a)aP[FA]
+ (1 — a)jP[CR] )
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Fic. 1. The influence of signal parameters on the behavioral re-
sponse criterion. Bell-shaped signal distribution parameters are at-
tributed to the S+ and S— training stimuli, such that novel stimuli
are assigned to the S+ or S— signal class with a likelihood based
on perceptual similarity to the respective training stimuli. Particular
combinations of the three signal parameters (Eg. 1) locate different
optimal decision criteria on the stimulus domain. Four examples
are shown: ([]) arbitrary ‘‘baseline’’ signal parameters, signal dis-
tributions modeled as Gaussian probability density functions with
variance = 1, means = 0 (S+, solid dark curve) and 1 (S—, solid
light curve), « = 0.50, h = 1.00, m = —0.20, a = —1.00, ] = 0.20);
(@) a parameter set that differs from baseline in the payoff for
correct detection, h = 0.66; (#) a set differing from baseline in
the variance of the S+ signal distribution, o2 = 3 (dashed curve,
tails truncated for display purposes); and (A) a set differing from
baseline in the relative abundance of the signal types, « = 0.28.
Relative to the criterion location for the baseline parameters, the
other parameter sets are shifted away from S— and result in alower
probability of false alarm responses (integral of the S— distribution
from criterion to —).

Probability Density

where U(x) = estimated utility over stimulus domain x;
P[CD] = probability of correct detection (measured as the
integral of the S+ distribution from threshold to —«); P[MD]
= probability of missed detection (equal to 1 — P[CD]);
P[FA] = probability of false alarm (integral of the S— dis-
tribution from threshold to —«); P[CR] = probability of cor-
rect rejection (= 1 — P[FA]), a = alpha, the relative prob-
ability of encountering an S+ signal (1 — a = the relative
probability of encountering a signal from the S— distribu-
tion); h = payoff of correct detection; m = payoff of missed
detection; a = payoff of falsealarm; and j = payoff of correct
rejection (whereh > mand j > a).

The point of maximum utility (the optimal criterion lo-
cation) shifts as signal parameters (or an animal’s functional
representations of them) change. For example, relative to
arbitrary ‘‘baseline’’ parameters, increasing the relative
abundance of S— stimuli, increasing the variance of S+ stim-
uli, or decreasing the benefit for correct detection of S+
stimuli each increase the risk of mistaking S+ for S— and
cause the point of maximum utility to shift away from S—,
in the direction of decreasing probability of false alarm (Fig.
1).

With this background, the three signal parameters can each
be seen to correspond to elements of adiscrimination learning
experiment. (1) The signals are the appearance of the S+ and
S— stimuli. The signal distributions correspond to gradients
of relative likelihood, based on perceptual similarity, that a
particular stimulus is from the S+ or S— stimulus class. (2)
The relative abundance of S+ and S— signals corresponds
to the relative frequencies of stimulus presentation during
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training. (3) The payoffs correspond to the reinforcement for
responding to or ignoring S+ and S— stimulus presentations.
Under the signals approach, the peak shift experiment is
a signal discrimination task in which animals are uncertain
as to which response (approach or avoid) is appropriate for
any given test stimulus. This perspective implies that the
response ‘‘peak,’’ although not a threshold, is a type of de-
cision criterion. The magnitude of the peak shift displacement
should thus be sensitive to variations in the three signal pa-
rameters. Manipulation of training contingencies similar to
the different parameter sets of Figure 1 should produce dif-
ferent magnitudes of peak shift. To investigate the possible
influence of peak shift on signal evolution in a more natu-
ralistic setting than that of typical peak shift experiments, we
trained bumblebees to forage for sugar water among a patch
of artificial flowers. Flowers within the patch were of two
types, rewarding (S+) and unrewarding (S—), which were
similar in color, modeling a Batesian mimicry system.

METHODS

The experiment took place in a flight cage, 60 cm on each
side. During experiments, the lab fluorescent lights were off
and the flight cage was illuminated by a 150-watt GE Plant
Gro-n-Show lamp, model 150r40/PL. The floor of the cage
held a 6 X 6 array of artificial flowers, 5-cm high on a 10-
cm grid. Flowers were made from paper disks, 4-cm diameter,
colored by an inkjet printer. In HSB color-space, the hue of
nine flower colors ranged from 80° (yellow-green) to 160°
(green-blue) in 10° increments (saturation = 50%, brightness
= 100%). Hue and brightness were not otherwise controlled
among the stimuli; however, bees will ignore brightness if
hue differences provide enough discrimination (Backhaus
1991; Chittka et al. 1992). Bees were trained on a subset of
the colors and tested on all nine colors. Flower positions on
the array were randomized. Reinforcer was pipetted onto a
thumbtack at the center of each flower prior to atraining or
testing session and not replenished during the session. During
tests, each color was present on the array four times and de-
ionized (DI) water was used as the reinforcer. The number
of landings on each of the nine colors was counted for each
bee. Counts were converted to relative proportion of total
landings per bee and arc-sin transformed. In SPSS (rl1;
SPSS, Inc.; Chicago, IL) a split-plot ANOVA design (across
bee group) was then applied to the transformed data, utilizing
landings on the nine colors as within-subjects measures.
Group and color were considered fixed effects. The factor of
interest was the landings-by-group interaction. Because
Mauchly’s Test indicated that sphericity assumptions were
not met, both the conservative Greenhouse-Geisser and more
liberal Huynh-Feldt corrections were computed. Following
Stevens (1992) the mean degrees of freedom of both correc-
tions was used to determine the P-value.

The subjects were bumblebees, Bombus impatiens, ob-
tained from Koppert Biological Systems (Romulus, M1). The
experiments involved six groups of bees, 10 inexperienced
bees per group. To preclude an effect of hive or hive age on
the results, group assignment was proportionally balanced
across three hives. One group received training under arbi-
trary ‘‘baseline’’ signal parameter values. Three comparison
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groups received training that differed from baseline by the
manipulation of one signal parameter. Additionally, two con-
trol groupswere utilized. Signal parameter values used during
training were: Baseline Group—relative frequency S+ =
0.50 (18 S+ flowers, 18 S— flowers present on training ar-
ray); S+ stimulus = 120° hue; S+ reinforcement = 4 plL
50% sucrose solution, half of S+ flowers reinforced with
sugar water, half with DI water; S— stimulus = 140° hue;
S— reinforcement = 4 pL 3% NaCl solution, half of S—
flowersreinforced with saltwater, half with DI water. Relative
Frequency Comparison Group—relative frequency S+ =
0.28 (10 S+ flowers, 26 S— flowers present on training array),
other conditions as for baseline group. Payoff Comparison
Group—S+ reinforcement = 4 pL 33% sucrose solution,
other conditions as for baseline group. Distribution Com-
parison Group—S+ stimuli = 110°, 120°, and 130° hue stim-
uli present simultaneously, each color present six times, other
conditions as for baseline group. Naive Control Group—neither
S+ nor S— training. Discrimination Control Group—S+
training only, as per baseline group. All bees received pre-
training on unprinted (white) flowers prior to training on
colored flowers in order to learn to feed from the flowers (4
wL 50% sucrose solution on 18 randomly placed flowers).
Additionally, al but the Naive Control Group received fur-
ther pretraining on colored flowers (4 pL of S+ reinforce-
ment on 18 randomly placed S+ flowers). Without this ad-
ditional pretraining, many bees would never visit S+ during
the first experimental training session, instead landing only
on S— (reflected in bias of Naive bees; see Results). The
groups that received S— training were tested after reaching
a criterion of 80% of landings on S+ flowers during one
training session. The control groups were tested after re-
ceiving the number of training sessions averaged by the other
groups. Training and testing sessions ended when a bee re-
turned to the hive or had not landed on a flower for 3 min.

RESULTS

Bumblebees exhibited peak shift. The flower choices of
naive, discrimination control, and baseline bees differed from
one another (Table 1). Baseline bees preferred a novel, yel-
lower stimulus over S+ (Fig. 2A). Additionally, as predicted,
bees showed sensitivity to signal-borne risk. The payoff and
distribution parameter manipulations produced greater shifts
in flower choice off of the S+ training stimuli, in adirection
away from S—, than that produced by the baseline group’s
parameters (Fig. 2B; Table 1). The relative abundance ma-
nipulation produced a skew in the predicted direction but not
a significant shift in flower choice relative to the baseline
group’s shift (Table 1). This skew is known as *‘area shift’’
in the comparative psychology literature (Rilling 1977,
Cheng 2002) where it is considered a weak form of peak
shift.

Responses of naive beestoward the bluer colors could have
been caused by the pretraining that all bees received but are
in agreement with prior research on bee innate color pref-
erences (reviewed by Gumbert 2000). The unimodal nature
of both control groups’ response gradients (vs., e.g., bimodal)
indicates that the bees subjectively perceived the stimuli in
the rank order of their objective hue. The peak shift exhibited
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TaBLe 1. ANOVA results of bee flower landings.

Group comparison dft F P (alpha = 0.05)
Baseline vs. Control 4.65, 83.72 9.94 P < 0.0005
Baseline vs. Naive 5.98, 107.62 13.14 P < 0.0005
Control vs. Naive 4.31, 77.60 13.82 P < 0.0005
Payoff vs. Baseline 4.36, 78.50 2.56 0.050 > P > 0.025
Distribution vs. Baseline 4.70, 79.82 2.53 0.050 > P > 0.025
Relative abundance vs. Baseline 4.45, 80.15 0.41 P > 0.25

1 Mean of Greenhouse-Geisser and Huynh-Feldt corrections for lack of sphericity.

by other groups was therefore not an artifact of perceptual
idiosyncrasy that might, for example, judge a stimulus of
110° hue as more similar to 130° than to 120°.

Discussion

Peak shift is taxonomically widespread. In addition to the
bees of the present study, it is exhibited by rats; birds; fish;
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Fic. 2. Bumblebees exhibit peak shift and aversion to signal-borne
risk. (A) Responses of naive bees (X) were toward bluer colors
(higher stimulus values). Control bees (+), in the absence of dis-
crimination training with S—, landed at the 130° stimulus more
frequently that at S+ (120°) reflecting the underlying predisposition
for bluer stimuli revealed by the naive group. The baseline group
(), exposed to S— (at 140°) exhibited a shift in flower choice
relative to both the naive and the control groups (P < 0.0005), and
landed more frequently on a novel and unrewarded stimulus than
on S+ itself. (B) In accordance with the increased signal-borne risk
of their training regimes, payoff (@) and distribution groups ()
showed a shift in flower preference over and above that of the
baseline group ([J; 0.050 > P > 0.025). The relative frequency
group (A) showed a response skewed in the predicted direction,
but not significantly different choices from the baseline group. Data
are mean proportion of responses per stimulus, n = 10 bees per

group.

primates, including humans (Purtle 1973); and possibly
moths (Daly et al. 2001). The signals approach to discrimi-
nation learning developed here casts the peak shift phenom-
enon as a decision-making strategy. This characterization
contrasts with those of either the evolutionary or psycholog-
ical literatures, in which peak shift has been viewed as a
heritable trait (e.g., O’Donald 1980; Weary et a. 1993) or
as strictly alearning phenomenon (e.g., Domjan 1998; Shet-
tleworth 1998), respectively. The perspective developed here
highlights the functional relevance of the cognitive processes
of discrimination and generalization as agents of evolutionary
selection in a broader and more generalizable way than prior
accounts. Though classical signal detection theory (Eg. 1),
with its threshol d-based response, does not adequately model
the biological mechanism producing a bell-shape ‘‘ peaked’’
response gradient, SDT does capture the functional ecological
parameters of the task, and characterizes the ‘*shift’’ as due
to an aversion to signal-borne risk. As a mechanistic model
for understanding bell-shaped response gradients, associative
learning theory may be used or the ‘‘integrated signal dis-
tributions’” assumption of classical SDT can be modified
(Lynn 2003).

Some authors have hypothesized that there might be her-
itable variation within a population in the magnitude of a
peak shift (O’Donald 1980, p. 165; Weary et al. 1993). For
example, Weary et al. suggested that peak shift could, in
circumstances in which it leads females to select low quality
or rare males, be a costly trait and selected against. Alter-
natively, they posited, in cases of little variation in male
character or little difference in benefit among males, peak
shift could be neutral with respect to a female’s fitness. Al-
though mechanistic aspects of signal parameter estimation
are undoubtedly heritable, the present experiments show that
the magnitude of the shift is related to the values of each of
the three signal parameters under which subjects learn to
distinguish S+ from S—. The amount of shift is thus already
more or |ess optimized to reflect stimulus characteristicssuch
as relative abundance of males of differing quality and the
difference in benefit among males. For experienced decision-
makers it is conceivable that the costs of searching for rare
resources is incorporated into the payoff parameter. Aslong
as the stimulus parameters that subjects have learned (or are
provided with as innate predispositions) are accurate at the
time a decision is made, a peak shift should always be more
beneficial than no shift at all when S+ and S— may be mis-
taken for one another. Except for conditions in which pa-
rameters are learned only once (e.g., imprinting [Weary et
al. 1993]), payoffs cannot be evaluated, or the decision is
only made once, the shift will be changing more quickly as
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aplastic learning process than as a fixed behavioral character
under selection across generations.

The bee experiments suggest that peak shift could drive
the evolution of flower characteristics for rewarding flowers
when the rewarding species can be confused with a nonre-
warding species. Floral mimicry by orchidsis such a system.
Many species of orchids offer no nectar reward to visiting
pollinators. The orchids are Batesian mimics. Orchid floral
mimics rely on the similarity of their appearance to that of
nearby rewarding species to produce false alarm visitation
mistakes by pollinators. For example, Orchisboryi is aBates-
ian mimic of a purple variety of Vicia villosa (Gumbert and
Kunze 2001). In peak shift terms, the orchid isan S— stimulus
and the Vicia S+. Gumbert and Kunze have established the
occurrence of false alarm visitations by pollinators, so it is
known that the signal distributions overlap sufficiently. If the
other signal parameters have appropriate values (e.g., false
alarms are sufficiently costly in terms of time or energy, or
the orchid is sufficiently common) and there is variation in
the morphology of the Vicia upon which selection can act,
then pollinators are predicted to show a peak shift toward a
color variant of V. villosa that is less similar to the orchid
and, by definition, rarer than the habitat’s average villosa.

Under conditions of uncertainty, flowers with which pol-
linators have less experience, but that are less likely to be
confused with costly flowers, are predicted to be at a polli-
nation advantage. The change in pollination frequencies will
have an effect on the host plant evolution (selection for the
variant coloration), feeding back to drive the evolution of the
signals upon which the decisions are based. In such a cir-
cumstance, changes to the signal parameters of unpreferred
stimuli induce receivers to change their response to preferred
stimuli without any change having occurred in the preferred
stimuli themselves. The orchid mimicisaffecting the model’s
evolution via the effect of signal-borne risk on the flower
visitation decisions.

Several authors have made arguments for the role of peak
shift in the sexual selection of secondary sexual traits. For a
female choosing a mate, S+ has been considered to be con-
specific males, but S— has been assumed to be either other
females (Guilford and Dawkins 1991; Weary et al. 1993) or
males of different species but similar appearance (Guilford
and Dawkins 1991). Peak shift might thus drive evolution of
sexual dimorphism and species recognition signals as far as
the initial peak shift, but not beyond (Weary et al. 1993).
This limitation arises because the S— morphology is not co-
evolving with the S+ morphology, and as the S+ and S—
stimuli become more distinguishable the magnitude of the
shift diminishes (Purtle 1973; Rilling 1977).

The signals approach, however, indicates how both S+
and S— distributions may originate from the same population
of potential mates, opening up the diversity of sexually se-
lected, elaborated charactersto the influence of generalization
and discrimination learning. In a typical peak shift experi-
ment, payoffs for S+ or S— are not considered to change as
the stimulus value changes, but to be equal for all stimuli
within each class. More naturalistically, however, traits eval-
uated during mate choice may honestly signal better quality
mates with increasing stimulus value (Andersson and Iwasa
1996). Consider a hypothetical signal identification issue in

SPENCER K. LYNN ET AL.

which a female songbird chooses a mate by evaluating the
males’ rate of singing (e.g., Bradbury and V ehrencamp 1998).
Males emit signals (songs) at some rate with some relative
frequency and information about health is honestly encoded
in song rate. Healthy males tend to sing at a faster rate than
unhealthy males. Objectively, of course, there are not two
categories of males, healthy and sick. Rather, thereisasingle
distribution of males arrayed on a continuum of health, which
may be unimodal. However, if the female’s experience is
limited or if she has an imprinted or innate expectation that
remains separate from a distribution compiled from experi-
ence, then she will represent males with two distributions.
Because she carries two signal distributions that have dif-
ferent average payoffs she may exhibit a peak shift in the
direction of faster singing males.

Peak shift could thus lead females to choose males of in-
creasingly exaggerated traits in a runaway evolutionary pro-
cess. As a product of generalization and discrimination, this
runaway selection occurs even if females have no predis-
position or sensory bias for the signal (Ryan 1998) and with-
out a genetic correlation between male trait and female pref-
erence (Fisher 1930). In the case of peak shift, females have
no ‘‘knowledge’’ that ‘‘faster is better;’’ they will not choose
the fastest singing males they encounter. Rather, femaleswill
avoid false alarms: males that they perceive to have a high
probability of being from the less profitable type. Here, type
(sick-and-slow or healthy-and-fast) is an artifact of the fe-
male’s stimulus generalization, imposed on the actual male
distribution.

Signaling and communication provide good systems in
which to study the evolutionary feedback between selection
by the environment on cognitive characteristics, and the ac-
tion of cognition as an agent of selection on the environment.
Generalization and discrimination learning can be used to
test ideas about the perception of signals, the payoffs of de-
cisions based on those signals, and how decisions may come
to influence the morphology of signals. The applicability of
signal detection theory to phenomena in generalization and
discrimination learning, such as peak shift, has interesting
implications regarding a role for cognitive mechanisms in
the evolution of signaling systems as diverse as mate choice
(Weary et al. 1993), warning coloration (Gamberaleand Tull-
berg 1996), anti-herbivore defense (Leimar and Tuomi 1998),
diet choice (Getty 1985), and Batesian mimicry and extrav-
agant advertisement (present study). In neither behavioral
ecology or comparative psychology is it altogether intuitive
that animals should learn a preference for stimuli they have
never experienced or that preferences may be altered without
the preferred stimulus itself undergoing some change. How-
ever, when costly and beneficial signals are perceptually sim-
ilar, for example, for deception by mimicry, or even when
generalizing from past experience over honest signals, there
are cognitive mechanisms widespread in the animal kingdom
that yield such nonintuitive results. These examples of the
possible role of peak shift in signal evolution can be gen-
eralized to other domains in which a signal receiver learns
to make choices in situations in which signal variation is
linked to the sender’s reproductive success.
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